

DIN 17666

ASTM B301

CS 60001 72401 LA FERTE BERNARD cedex

France

Tél: +33 (0)2 43 60 60 65 Fax: +33 (0)2 43 93 55 03

info@m-lego.com

Cuivre faiblement allié

CT

Désignation de l'alliage		С	Composition chimique*			
		Eléments	% moy.	Impuretés	% max.	
CuTeP		Te	0.55			
		Р	0.008			
EN12164	CW118C	Cu	le reste	Autre	0.1	
BS 2874	C109					

^{*} valeurs indicatives (pourcentage en poids)

%O2 < 40 ppm

Propriétés et applications

CuTeP - 2.1546

C14500

Le tellure forme des particules qui, disséminées dans la matrice du cuivre, favorisent la fragmentation des copeaux à l'usinage. Cet alliage se distingue par sa très faible teneur en oxygène. Il se déforme très bien à froid avec une excellente conductivité électrique et thermique. Buses de soudage, connecteurs, visserie, boulonnerie, appareillage électrique...

Caractéristiques physiques à 20°	C	Traitement thermique		
Masse volumique (g/cm3)	8.9	Intervalle de solidification (°C)	1050-1080	
Module de Young (GPa)	120	Température de matriçage (℃)	720-900	
Coef. dilatation thermique (20-300 °C) (10 ⁻⁶ /K)	18	Température de recuit (°C)*	425-625	
Conductivité thermique (W/m.K)	369	Température de détente (°C)**	225-275	
Capacité thermique (J/Kg.K)	385	* le recuit permet de réduire la dureté de la	matière et	
Conductivité électrique (% I.A.C.S.)	90	augmenter sa ductilité.		

** la détente permet de relacher les contraintes internes générées par la déformation plastique à froid de la matière afin de réduire le risque de corrosion saisonnière.

Mise en forme		Assemblage		
Déformation à chaud	Bonne	Brasage		
Déformation à froid	Excellente	Tendre	Très bon	
Décolletage	85% (Réf : CuZn39Pb3 = 100%)	Fort	Très bon	
Résistance à la corrosion				
Cet alliage présente une excellente résistance à la corrosion.		Soudage		
		Chalumeau oxy-acéthylénique	Peu approprié	
		Arc protégé	Peu approprié	
		Par résistance	Peu approprié	

Caractéristiques mécaniques selon EN12164							
Etat	Diamètre [mm]		Rp0,2 [Mpa]	Rm [Mpa]	A(%)	Dureté HB	
Elal	de	à	mini	mini	mini	Durete HD	
M	Tous		Brut de presse - sans spécification des propriétés mécaniques				
R250	6	G	80	180	250	7	-
H080		00	-	-	-	80-110	
R300	6	40	240	300	5	-	
H095		40	-	-	-	95-130	
R360	6	6	8	300	360	-	-
H120			0	-	-	-	120 mini

Gamme de fabrication

Formes disponibles:

N'hésitez pas à nous contacter pour toute information complémentaire (dimensions, tolérances, états métallurgiques...).

Nos équipes techniques sont capables de vous fournir le support nécessaire pour la réalisation de vos projets.

info@m-lego.com